
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

A Hardware Architecture for Filtering Irreducible

Testors

Vladı́mir Rodrı́guez, José F. Martı́nez, Jesús A. Carrasco,

Manuel S. Lazo, René Cumplido and Claudia Feregrino Uribe

Instituto Nacional de Astrofı́sica, Óptica y Electrónica, México

Abstract—Feature selection in pattern recognition is a prob-
lem whose space complexity grows exponentially regarding the
number of attributes in a dataset. There are several hardware
implementations of algorithms for overcoming this complexity.
These hardware architectures relay on a software component for
filtering irreducible features subsets, which is a computationally
complex task. In this paper, a new hardware module for the
filtering process is presented. The main advantage of this new
architecture is that no additional time is required for hardware
execution whilst the software component is no longer needed.
Experimental results show that the runtime magnitude order for
software is the same as for hardware in some cases. The proposed
architecture is algorithm independent and may lead to smaller
hardware realizations than previous architectures.

I. INTRODUCTION

Nowadays, the feature selection problem in pattern recog-
nition is usually characterized by a large number of attributes.
The feature selection process consists in identifying those
attributes that provide relevant information for the classifi-
cation process. Testor Theory is an effective way to deal
with feature selection [11]. A testor is defined as a subset of
attributes capable of discerning objects from different classes.
An irreducible testor is a testor such that every attribute is
indispensable for satisfying the testor condition. The problem
of finding all irreducible testors has been proven NP-hard [10].

Reconfigurable computing using Field Programmable
Gate-Array (FPGA) has become a powerful alternative to
handle complex computational problems. An FPGA imple-
mentation of Testor Theory algorithms allows us to evaluate a
candidate subset of attributes, over the whole basic matrix, in a
single clock cycle. This kind of parallelization is not feasible
in other type of technology as GPU since it would require
some special handling of shared memory.

The first implementation of Testor Theory algorithms on
FPGA [2] was a brute force approach for computing testors.
In this first approach all the 2n combinations of n attributes
are tested in order to select only those which are testors.
Afterwards, in [8] a hardware implementation of the Bottom-
Top (BT) algorithm for computing irreducible testors was
introduced. The BT algorithm uses a candidate pruning process
for avoiding unnecessary candidate evaluation, reducing this
way the number of iterations needed. These two previous
platforms computed a set of testors on the FPGA device whilst
irreducible condition was evaluated afterwards by the soft-
ware component in a hosting PC. In [9] a hardware-software
platform for computing irreducible testors implementing the
BT algorithm, as in [8], was presented. This last architecture
also included a new module that eliminates most of the non

irreducible testors before transferring them to a host software
application for final filtering.

Main disadvantages of these approaches are the huge
amount of data that must be transferred to the PC and the extra
cost of the final filtering stage in the software component. For
this reason, in this paper, we develop a hardware module for
eliminating all non irreducible testors on the FPGA device,
reducing the amount of data that must be transferred to the
PC. This modification incurs no delay in the FPGA runtime.

II. BASIC CONCEPTS

The concept of testor for pattern recognition was intro-
duced by [4]. They defined a testor as a subset of features that
allows differentiating objects from different classes. Testors
are quite useful, especially when object descriptions contain
both numeric and non-numeric features, and maybe they are
incomplete (mixed incomplete data) [7].

Let TM be a training matrix with k objects described
through n features of any type {x1, . . . , xn} and grouped in
r classes. Let DM be a Boolean dissimilarity matrix (0 =
similar, 1 = dissimilar), obtained from a feature by feature
comparison of every pair of objects from TM belonging to
different classes. DM has m rows and n columns, where
usually m >> k.

Let T be a subset of attributes. Testors and irreducible
testors are formally defined as follows:

Definition 1: T is a testor if and only if when all features
(columns) are eliminated from DM , except those from T ,
there is not any row of DM with only 0’s. T is an irreducible
testor if none of its proper subsets is a testor.

In defintion 1, if there is not any row of DM with only
0’s it means that there is not a pair of objects from different
classes that are similar on all the features of T , that is, a testor
T allows differentiating objects from different classes. From
definition 1, if T is a testor then, any superset of T is a testor
too.

The number of rows in DM could be too large, therefore a
strategy to reduce this matrix, without losing relevant informa-
tion for computing irreducible testors, is eliminating redundant
rows [6].

Definition 2: Let f = [f1, f2, . . . , fn] and f ′ =
[f ′

1
, f ′

2
, . . . , f ′

n] be two rows of DM , f is a sub-row of f
′

if
for each column j = 1, 2, . . . , n; fj ≤ f ′

j and for at least one
index, the inequality is strict.

Definition 3: A row f of DM is a basic row if no row of
the matrix DM is a sub-row of f .

Definition 4: The basic matrix of DM , denoted as BM , is
the sub-matrix of DM formed only by the basic rows (without
repetitions).

Let TT (DM) and TT (BM) be the sets of all irreducible
testors of DM and BM respectively, it is relatively easy
to prove that TT (DM) = TT (BM), see [5]; i.e., we can
conclude that usually DM contains redundant information. In
addition, the construction of BM from DM is a very fast
process, then we work over BM .

Definition 5: Let fi be a row of BM, fi is a zero row of
S ⊆ R, and we denote it as fi

0(S), if ∀xp ∈ S, fi[p] =
BM [i, p] = 0. We denote as ΣSf

0 the amount of zero rows
of S.

Definition 6: In terms of BM, a testor T ⊆ R is a feature
set such that there are no zero rows of T in BM.

Definition 7: Let fi be a row of BM, fi is a typical row
of S ⊆ R regarding xq , being xq ∈ S, and we denote it by

fi
1(S, q) if fi[q] = BM [i, q] = 1, and ∀xp ∈ S, xp 6= xq ,

fi[p] = BM [i, p] = 0.

Definition 8: In terms of BM, T ⊆ R is an irreducible
testor if T is a testor and ∀xj ∈ T, ∃fi

1(T, j).

This means that for each feature in an irreducible testor,
there exists a row in the sub matrix of BM associated to T ,
having a 1 in the position corresponding to that feature, and 0
in all remaining positions (if any column of T is eliminated, at
least one zero row will appear, and the testor property would
not be fulfilled).

III. PROPOSED ARCHITECTURE

Hardware implementations of Testor Theory algorithms
have a common module holding the basic matrix data, which
is responsible for this verification. Our proposed architecture
consists in modifying this module which can be ported to
any algorithm implementation. We will introduce the new
architecture in the top of the platform presented in [9].

In the hardware platform, a feature subset is handled as
an n-tuple, using a positional representation for all the n
attributes of a basic matrix BM . Given a subset T , its n-tuple
representation has a 1 in the corresponding position j for each
xj ∈ T and 0 otherwise. Fig. 1 shows the original platform
for testors computation as in [9]. This architecture consists of
three main modules: the Candidate Generator, the BM and
the Dismiss Testors.

The Candidate Generator module handles the sequence
of candidates to be evaluated. In order to calculate the next
candidate, this module receives some feedback information
from the BM module. The Candidate Generator module is
specific and its internal design is beyond the goal of this paper.
The BM module handles the process of deciding whether an
n-tuple is a testor of BM , comparing the candidate against
each one of the BM ’s rows. Since our modifications take place
in this module, we will expose it in detail afterwards. Finally,
the Dismiss Testors module filters most non irreducible testors

Fig. 1. Previous Architecture.

by checking inclusion of every new testor in each register of
an output FIFO [9].

The modified architecture for finding irreducible testors is
shown in Fig. 2. It can be seen that the Dismiss Testors module
is no longer needed since we have a signal indicating whether
the current candidate is an irreducible testor or not.

Fig. 2. Proposed Architecture.

Fig. 3. Original BM module.

The original BM module is composed of M sub-modules
named row i, as shown in Fig. 3. Each row i module contains
a row (n bits) of the basic matrix and the logic needed to
perform testor evaluation. To decide whether an n-tuple is
a testor, a bitwise AND operation is performed between the
constant stored in each row i module and the current candidate,
as shown in Fig. 4. If at least one bit of the AND operation
is TRUE, then the output testor of that particular row i sub-
module is also TRUE. If the output testor of all row i sub-
modules is TRUE, then the output testor of the BM module
is TRUE, which means that the candidate is a testor of BM .
A priority encoder is used to select the n-tuple holding the
data corresponding to the upper row of BM which does not
satisfy the testor condition. This information is used by the
Candidate Generator module given that the current candidate
is not a testor [9].

Fig. 4. Original BM row.

Fig. 5. Proposed BM row.

In our proposed architecture, an N to N Decoder is intro-
duced into each row i module, as shown in Fig. 5. This new
component receives as input the result of the AND operation
between the current candidate and the corresponding BM row.
The output from the N to N Decoder repeats the input when
there is only one bit set to 1, and returns the null n-tuple
(0, ..., 0) otherwise. For those rows with only one bit having a
1 after ANDed with the candidate, the attribute in the position
of that bit is indispensable if the candidate is a testor.

According to definition 8, every attribute in a testor must
be indispensable to be an irreducible testor. Fig. 6 shows
the modified BM module for the evaluation of irreducible
testors. Two operations are added to this module in order to
verify the condition stated in definition 8. First, a bitwise OR
operation is performed among the output Irreducible of all
row i submodules. The result of this operation has a 1 in the
positions corresponding to each indispensable attribute in the
current candidate. This value is then compared to the current
candidate, and the output irreducible testor is TRUE given
that this comparison holds equality and the output testor of
the BM module is TRUE.

Fig. 6. Proposed BM module.

TABLE I. BASIC MATRIX

x0 x1 x2 x3

1 1 0 0

1 0 1 0

0 1 0 1

Lets us take for example the basic matrix shown in Table I.
We are going to illustrate the operation of the proposed
architecture using two testors for this basic matrix. First we
will evaluate the candidate {x0, x1} which is an irreducible
testor. Secondly, the candidate {x0, x1, x2} will be evaluated.
This last attribute set is a superset of {x0, x1} and thus, it is
not an irreducible testor.

TABLE II. AN EXAMPLE OF IRREDUCIBLE TESTOR

Cand. {x0, x1} Decoder output

x0 x1 x2 x3 x0 x1 x2 x3

1 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

Candidate = 1 1 0 0

Left rows of Tables II and III show the result of the AND
operation between each row of BM and the corresponding
candidate. Rows in the right side show the decoder output
taking as input its corresponding left row. In the last row, the
result of an OR operation over all above n-tuples is shown.

According to our previous explanation, the candidate {x0, x1}
is an irreducible testor given that the result of the OR operation
is equal to the candidate itself; while the candidate {x0, x1, x2}
is not.

TABLE III. AN EXAMPLE OF NOT IRREDUCIBLE TESTOR

Cand. {x0, x1, x2} Decoder output

x0 x1 x2 x3 x0 x1 x2 x3

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0

Candidate 6= 0 1 0 0

IV. EVALUATION AND DISCUSSION

The proposed architecture allows sending only irreducible
testors from the FPGA device to the host PC. This modification
eliminates the final filtering stage in the software component
of the hardware-software platform [9]. The main draw back of
our proposed modification is its dependence with basic matrix
dimensions which could lead to a larger hardware realization
when the number of rows is much bigger than the number of
columns in the basic matrix.

Transferring huge amount of data from FPGA device to the
host PC could saturate the communication channel, causing
the main candidate evaluation process to work intermittently.
Lets take for instance a middle size problem with 64 attributes
(represented by 8 bytes) evaluating candidates at 50MHz. A
peak situation where several consecutive candidates are testors,
leads to a data rate of 400MB/s. Even though there is an
output FIFO, this data rate will eventually saturate our 48MB/s
channel [3]. Transferring only irreducible testors to the host
PC, reduces drastically the probability of channel saturation.

The final filtering stage in the software component needed
in the original platform [9] checks every pair of testors received
from the FPGA. Testors which are superset of any other testor
are eliminated as they do not satisfy the irreducibility condition
stated in definition 1. We can establish the lower boundary
of the computational complexity for this process as N(N −
1)/2, where N is the number of irreducible testors in the basic
matrix.

Table IV shows the runtime, including the testors compu-
tation and the final filtering stage, for some basic matrices
obtained from real data. For this purpose eight standard
datasets from the UCI Repository of Machine Learning [1]
were used. Columns in Table IV show the dataset name, the
number of candidates tested by the BT algorithm, the number
of irreducible testors found, the runtime for the main algorithm
execution in the FPGA device and the final filtering stage in
the host PC. For these runtime calculations, a frequency of
3.6GHz was used for software execution and 50MHz for the
FPGA architecture.

For most of datasets shown in Table IV the processing time
taken for FPGA and PC executions are of the same order of
magnitude. For those basic matrices with a large number of
irreducible testors, the final filtering stage could be even more
expensive than the main testors computation, as is the case for
the dataset labelled german. The total runtime for the previous
architecture is the sum of the FPGA and the PC runtime.

TABLE IV. ALGORITHM EXECUTION AND IRREDUCIBLE TESTORS

FILTERING STAGE RUNTIMES FOR REAL DATASETS

Dataset
Tested

Candidates

Irreducible

Testors

FPGA

runtime

(µs)

PC

runtime

(µs)

liverdisorder 16 9 0.32 0.04

zoo 20 7 0.40 0.02

krvskp 36 4 0.72 0.01

shuttle 38 19 0.76 0.17

tic-tac-toe 44 9 0.88 0.04

australian 330 44 6.60 0.95

lymphography 802 75 16.04 2.77

german 16921 846 338.42 357.44

Our proposed platform will require only the FPGA runtime.
Although finding all irreducible testors for these datasets does
not constitute a complex computational problem, they serve to
show our point.

The original architecture includes a module for the elimi-
nation of most non irreducible testors, called Dismiss Testors.
This module consists of a predefined number of registers which
store previously calculated testors. New testors are compared
against each previously stored testor removing any superset.
At every iteration, the remaining testors are shifted to the
bottom of this FIFO while the new ones are introduced on
top. Outgoing testors from the Dismiss Testors module are
transferred to the host PC for final filtering. The more registers
in the FIFO, the higher the percentage of non irreducible
testors eliminated. However, the number of registers impacts
directly on hardware requirements. Experimental results in [9]
suggest that the use of 16 registers provides a good balance
between non irreducible testors elimination percentage and
hardware utilization.

Tables V and VI show the hardware utilization of the
original and the proposed architectures for two different basic
matrices with 100 rows and 50 attributes each. Resource
utilization in the original architecture is shown for 8, 16
and 32 registers in the Dismiss Testors module. The basic
matrices have 12% and 45% density of 1’s for Tables V and
VI respectively.

TABLE V. FPGA RESOURCE UTILIZATION FOR SPARTAN-6 LX45 FOR

N = 50 AND M = 100 (DENSITY 12%)

Resources 8 registers 16 registers 32 registers Proposed Architecture

Slices 648 703 1043 599

Flip-Flops 1313 1715 2520 814

LUTs 1689 2040 2515 1530

TABLE VI. FPGA RESOURCE UTILIZATION FOR SPARTAN-6 LX45
FOR N = 50 AND M = 100 (DENSITY 45%)

Resources 8 registers 16 registers 32 registers Proposed Architecture

Slices 701 814 880 895

Flip-Flops 1335 1736 2548 937

LUTs 1914 2162 2725 2439

The Dismiss Testors module has a fixed size in the FPGA
realization once the number of registers and attributes is given.
This fact is reflected in the high stability shown in the resource
utilization for two basic matrices with different density of
1’s, as it can be seen in Tables V and VI. The proposed

architecture does, on the other hand, benefits from the logic
optimization accomplished by the synthesis process. The goal
of synthesis is to provide the smallest possible implementation
of the design while meeting timing and power constraints. This
means that the hardware utilization of the proposed module
depends on the structure of data values in the basic matrix.
The high reduction achieved by optimization in the low density
matrix, explains that the proposed architecture is smaller than
the original architecture, even with 8 registers, in Table V.

V. CONCLUSION

The hardware architecture presented in this work allows
us to compute irreducible testors on the FPGA device. This
characteristic implies a shorter runtime, avoiding the final fil-
tering stage needed in previous implementations. The resource
utilization of the proposed architecture depends on the basic
matrix dimensions. This characteristic could be a drawback for
basic matrices with a large number of rows. This new module
is, however, sensitive to the logic optimization accomplished
by the synthesis process. We found that optimization may lead,
in some cases, to smaller hardware realizations than previous
architectures.

ACKNOWLEDGMENT

This work was partly supported by the National Council of
Science and Technology of Mexico (CONACyT) through the
project grants CB2008-106366 and SEP-2010-158135.

REFERENCES

[1] Bache, K., Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

[2] Cumplido, R., Carrasco, A. and Feregrino, C. (2006). On the Design
and Implementation of a High Performance Configurable Architecture
for Testor Identification. Lectures Notes in Computer Science, 4225,
665-673.

[3] Digilent Synchronous Parallel Interface (DSTM) Programmer’s Refer-
ence Manual. Digilent, Inc.

[4] Dmitriev, A. N., Zhuravlev, Y. I. and Krendeliev, F. P. (1966). About
Mathematical Principles of Objects and Phenomena Classification.
Diskretni Analiz, 7, 3-17.

[5] Lazo-Cortés, M., Ruiz-Shulcloper, J. (1995). Determining the feature
relevance for non-classically described objects and a new algorithm
to compute typical fuzzy testors. Pattern Recognition Letters, 16(12),
1259-1265.

[6] Lazo-Cortés, M., Ruiz-Shulcloper, J., and Alba-Cabrera, E. (2001).
An Overview of the Evolution of the Concept of Testor. Pattern
Recognition, 34, 753-762.

[7] Martı́nez-Trinidad, J. F. and Guzmán-Arenas, A. (2001). The Logical
Combinatorial Approach to Pattern Recognition an Overview through
Selected Works. Pattern Recognition, 34, 741-751.

[8] Rojas, A., Cumplido, R., Carrasco-Ochoa, J. A., Feregrino, C. and
Martı́nez-Trinidad, J. F. (2007). FPGA Based Architecture for Com-
puting Testors. Lectures Notes in Computer Science, 4881, 188-197.

[9] Rojas, A., Cumplido, R., Carrasco-Ochoa, J. A., Feregrino, C. and
Martı́nez-Trinidad, J. F. (2012). Hardware-software platform for com-
puting irreducible testors. Expert Systems with Applications, 39, 2203
- 2210.

[10] Skowron, A. and Rauszer, C. (1992). The discernibility matrices and
functions in information systems. Handbook of Applications and Ad-
vances of the Rough Sets Theory, 331-362.

[11] Santos, J., Carrasco, A., and Martı́nez, J. F. (2004). Feature selection
using typical testors applied to estimation of stellar parameters. Com-
putación y Sistemas (CyS), 8(1).

